Selección de cepas de actinomicetos para el control de hongos fitopatógenos de suelo, con especial referencia a la podredumbre radical de la judía común (phaseolus vulgaris l.) (2024)

  • 1. Introducción o motivación de la tesis: The common bean (Phaseolus vulgaris L.) is the most important crop for the Cuban population within the group of edible legumes with the annual production being 136,570 tonnes and yields ranging from 1.1 to 1.4 t/ha. The environmental conditions, typical of subtropical countries, are favourable for the development and proliferation of a wide and heterogeneous soil microflora. Among them, the phytopathogenic soil-borne fungi Macrophomina phaseolina and Rhizoctonia solani, which are associated with bean root rot disease, cause important economic losses in this crop in Cuba. The low availability of active ingredients for the control of these plant pathogenic fungi, together with their intrinsic biology, typical of soil fungi, lead us to reconsider an integrated management strategy for the proper management of the disease. In this regard, the Centre for Bioactive Chemicals (CBQ) of the Central University "Marta Abreu" of Las Villas (UCLV) has a collection of 760 strains of actinomycetes, microorganisms that have not been explored in Cuba so far as biological control agents (BCAs) with agricultural applications. Within the actinomycetes, Streptomyces is the most predominant genus in the terrestrial environment and the most studied for its properties as a biocontrol agent for plant pathogens and plant growth promoter. They are characterized by the production of biologically active primary and secondary metabolites and precursors of about 45 % of all bioactive compounds. Their enzymes allow them to chemically break down cellulose, lignin, chitin and protein-rich residues, as well as to physically bind soil particles together to form aggregates and prevent erosion.

    2.Contenido de la investigación: Thus, the main objective of this PhD Thesis was to characterize 60 actinomycete strains in vitro and in vivo as ACBs against M. phaseolina and R. solani. Therefore, the first objective of this PhD Thesis was to carry out an exhaustive bibliographic review of the genus Streptomyces spp. as BCAs, with special emphasis on soil-borne pathogens. Here, aspects related to the phenotypic, biochemical and molecular characterisation of Streptomyces as well as their mechanisms of action and their application in crop protection were compiled.

    The Objective 2 aimed to evaluate the effectiveness of 60 actinomycete strains as BCAs against M. phaseolina and R. solani in vitro by dual culture assays. The most effective strains were characterized according to their cellulolytic, chitinolytic and proteolytic extracellular enzyme activity, as well as their morphological, biochemical and molecular characters. The results showed that 66.6% and 41.0% of the actinomycete strains significantly inhibited the mycelial growth of M. phaseolina and R. solani, respectively, compared with the control; and 30% of them showed a common effect against both pathogens. Significant differences were observed in their enzymatic and biochemical activity. Morphological and biochemical characters allowed us to identify all the strains as species belonging to the genus Streptomyces. Streptomyces strains CBQ-EA-2 and CBQ-B-8 showed the highest effectiveness in vitro. Finally, the effect of seed treatments with both strains (CBQ-EA-2 and CBQ-B-8), using single or mixed applications, against the disease development was evaluated on seedlings of P. vulgaris cv. Quivicán grown in pots filled with soils inoculated with M. phaseolina and R. solani. Treatments combining the two Streptomyces strains (CBQ-EA-2 + CBQ-B-8) were able to significantly reduce the disease incidence and severity for both pathogen infections compared to the nontreated and inoculated control. Furthermore, they showed a similar effect to that observed for the BCA Trichoderma harzianum A-34 and the chemical Celest® Top 312 FS (Syngenta®; Basel, Switzerland) treatments, which were included for comparative purposes.

    The Objective 3 was carried out to validate the results of the Objective 2 in three experimental fields with soils naturally infested by M. phaseolina and R. solani. In all experimental fields, significant differences in disease incidence and severity were observed between treatments compared to the nontreated controls. Overall, single treatments with Streptomyces sp. strain CBQ-EA-2 or Streptomyces sp. strain CBQ-B-8 showed significantly less effect in reducing disease incidence and severity than treatments combining the two strains (Streptomyces sp. CBQ-EA-2+ CBQ-B-8), regardless the experimental field. The three treatments with Streptomyces spp. were significantly more effective than those with Celest® Top 312 FS; in contrast, most of the Streptomyces treatments had a significantly lower effect than the BCA T. harzianum A-34. When we evaluated the components of legume yield and quality, in general, the treatment combining the two strains (Streptomyces sp. CBQ-EA-2+ CBQ-B-8), showed similar results with the chemical Celest® Top 312 FS and with the BCA T. harzianum A-34.

    Finally, the objective 4 was a complementary study carried out during a 6-month pre-doctoral stage at the University of Cordoba (Spain). The goal lof this work was to evaluate the effect of six of the most effective Streptomyces strains from the Objective 1 as BCAs against Verticillium Wilt of olive caused by Verticillium dahliae, one of the main olive diseases in Spain. For this purpose, trials were carried out under controlled conditions using two isolates of Verticillium dahliae (V-004 and V-323), evaluating the effect of the Streptomyces strains on mycelial growth of the pathogen by dual culture as well as their effect on the viability of conidia and microsclerotia of the pathogen in vitro. In addition, their effect on the disease development was determined in olive plants inoculated with V. dahliae isolate V-323. The six Streptomyces sp. strains and the two BCAs F. oxysporum FO12 and A. pullulans AP08 showed a significant effect on mycelial growth inhibition for both V. dahliae isolates V-004 and V-323 compared to the positive control. The reference BCA FO12 was the most effective on mycelial growth inhibition followed by AP08 for the two V. dahliae isolates; while the Streptomyces sp. strains showed a moderate effect for both V. dahliae isolates. Among the Streptomyces strains evaluated, CBQ-EA-2 was the most effective inhibiting mycelial growth of V. dahliae.

    3.Conclusión: 1. The qualitative characterization of the extracellular enzyme activities, the antagonism of the Streptomyces spp. strains, as well as the in vivo studies against M. phaseolina and R. solani under semi-controlled conditions have allowed us to characterize promising strains as BCAs, and to have a biological alternative in the framework of the integrated management of the main common bean diseases caused by soil pathogens in Cuba.

    2. A total of 62% of the Streptomyces strains revealed a high cellulolytic capacity with a halo between 80 to 90 mm in diameter, and 90% of them developed a halo with considerable extension around the colony, which denotes an important cellulolytic hydrolysis.

    3. The 66.7% of the Streptomyces strains showed chitinolytic capacity, highlighting the CBQ-EBa-5 strain, with a 35.5 mm clearance halo surrounding the colony.

    4. Based on the phenotypic and biochemical characters, all the strains were identified as Streptomyces spp. The identity of the two representative strains that showed that highest effectiveness on MGI in vitro (CBQ-EA-2, and -B-8) was con¿rmed by sequencing the 16S rRNA gene using the universal primers 27f and 1492r for eubacteria.

    5. Regarding the in vitro ef¿cacy of the 60 Streptomyces potential strains against M. phaseolina and R. solani, it varied depending on the soil-borne pathogen tested. 40 and 25 out of the 60 actinobacterial strains inhibited the mycelial growth of M. phaseolina and R. solani, respectively. Among the most effective strains, 18 of them showed a common effect against both pathogens, with the CQB-EA2, and -CD-24 being among the strains that showed greater ef cacy in inhibiting mycelial growth of the two pathogens.

    6. The treatments conducted using a mix of the two Streptomyces sp. strains (CBQ-EA-2 + -B-8) showed a signi¿cant greater effectiveness against both pathogens compared to treatments performed with the two strains alone. In addition, the effectiveness of the two combined Streptomyces strains in controlling the disease was similar to that observed for the other comparative treatments such as T. harzianum A-34 or the chemical (Celest® Top312FS).

    7. The experiments conducted in the field corroborate the results ontained under controlled controlled conditions. Therefore, treatments by coating seeds of common bean with Streptomyces sp. CBQ-EA-2 or CBQ-B-8, alone or in combination, before sowing significantly reduced the DI and DS of root rot disease associated with M. phaseolina and R. solani in the field compared with nontreated control plants. In addition, these treatments were able to improve the quality of legumes, significantly increasing the yield crop compared with the nontreated control.

    8. The six Streptomyces sp. strains and the two BCAs Fusarium oxysporum FO12 and Aureobasidium pullulans AP08 showed a significant effect on MGI of V. dahliae compared to the positive control, with the reference BCA FO12 being the most effective, followed by AP08 or the Streptomyces strains that showed a moderate effect.

    9. The six Streptomyces sp. strains and the two BCAs F012 and AP08 also showed a significant effect on MSI of V. dahliae, but in this case most of the Streptomyces strains showed similar effect than that observed for the reference BCA FO12, including the treatment combining CBQ-EA-2 and CBQ-B8. AP08 and CBQ-EBA-21 were the tretaments with least effect on MSI.

    4. Bibliografía: 1. Abbasi, S., Safaie, N., Sadeghi, A., Shamsbakhsh, M. 2020. Tissue-specific synergistic bio-priming of pepper by two Streptomyces species against Phytophthora capsici. PloS One 15: e0230531.

    2. Abu-Tahon, M.A., Mogazy, A.M., Isaac, G.S. 2022. Resistance assessment and enzymatic responses of common bean (Phaseolus vulgaris L.) against Rhizoctonia solani damping-off in response to seed presoaking in Vitex agnus-castus L. oils and foliar spray with zinc oxide nanoparticles. S. Afr. J. Bot. 146: 77¿89.

    3. Agrios, G.N. 2005. Introduction to plant pathology. In Plant Pathology, 5th ed.; Agrios, G.N., Ed; Elsevier Academic Press: Burlington, MA, USA, pp 23¿37.

    4. Al-Askar, A.A. 2012. Microbiological studies on the in vitro inhibitory effect of Streptomyces collinus albescens against some phytopathogenic fungi. Afr. J. Microbiol. Res. 6: 3277¿3283.

    5. Al-Askar, A.A., Rashad, Y.M., Abdulkhair, W.M. 2013. Antagonistic activity of an endemic isolate of Streptomyces tendae RDS16 against phytopathogenic fungi. Afr. J. Microbiol. Res. 7: 509¿516.

    6. Alekhya, G., Sharma, R., Gopalakrishnan, S. 2016. Streptomyces spp., a potential biocontrol agent of charcoal rot of sorghum caused by Macrophomina phaseolina. Indian J. Plant Prot. 44: 222¿228.

    7. Alharbi, S.A., Arunachalam, C., Murugan, A.M., Wainwright, M. 2012. Antibacterial activity of actinomycetes isolated from terrestrial soil of Saudi Arabia. J. Food. Agric. Environ. 10: 1093¿1097.

    8. Ali, A., Junda, M., Rante, H., Nuramelia, R. 2018. Characterization of Actinomycetes antagonist Fusarium oxysporum f. sp. passiflora isolated from rhizosphere soil of purple passion fruit plants, South Sulawesi, Indonesia. J. Phys. Conf. Ser. 1028: 012015.

    9. Altieri, M., Nicholls, C., Montalba, R. 2017. Technological approaches to sustainable agriculture at a crossroads: an agroecological perspective. Sustainability. 9: 349.

    10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403¿410.

    11. Álvarez-Pérez, J.M., González-García, S., Cobos, R., Olego, M.Á., Ibañez, A., Díez-Galán, A., Coque, J.J.R. 2017. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl. Environ. Microbiol. 83: e01564¿17.

    12. Amini, J., Agapoor, Z., Ashengroph, M. 2016. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. J. Plant Prot. Res. 56: 258¿264.

    13. Analytical Software. Statistix 10. User¿s Manual. Analytical Software, Tallahassee, FL, USA. 2013. https://www.scribd.com/document/381816978/Statistix-10-Manual (accessed 18 Oct. 2021).

    14. Ara, I., Bukhari, N.A., Wijayanti, D.R., Bakir, M.A. 2012. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from various regions in Saudi Arabia. Afr. J. Biotechnol. 11: 3849¿3857.

    15. Ayed, A., Essid, R., Jallouli, S., Ben Zaied, A., Ben Fdhila, S., Limam, F., Tabbene, O. 2022. Antifungal activity of volatile organic compounds (VOCs) produced by Streptomyces olivochromogenes S103 against Candida albicans. Euro-Mediterr. J. Environ. Integr. 7: 251¿255.

    16. Ayuningrum, D., Jati, O. 2021. Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia. Biodiversitas. 22: 1819¿1828.

    17. Azam, S., Munir, A., Saad Khan, M. S., Fazal, S., Mehmood, A., Ali, S., Hussain, S. 2017. In-silico identification of novel resistant genes for fungal pathogen Fusarium oxysporum f. sp. cubense Race 4: Causative agent of banana vascular wilt disease. J. Plant. Biochem. Physiol. 5: 2.

    18. Balaraju, K., Kim, C.J., Park, D.J., Nam, K.W., Zhang, K., Sang, M.K., Park, K. 2016. Paromomycin derived from Streptomyces sp. AG-P 1441 induces resistance against two major pathogens of chili pepper. J. Microbio. Biotechnol. 26: 1542¿1550.

    19. Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N.,Jacquard, C., Meier-Kolthoff, J.P., Klenk, H.P., Clément, C., Ouhdouch, Y., van Wezel, G.P. 2015. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1¿43.

    20. Bawazir, A.M.A., Al-Haddad, A., Abdullah, A.M., Shantaram, M. 2017. Actinomycetes from Mountains of Hadhramout-Yemen. Int. J. Curr. Microbiol. App. Sci. 8: 3521¿3530.

    21. Bedine, B.M.A., Sameza, M.L., Iacomi, B., Tchameni, S.N., Boyom, F.F. 2020. Screening, identification and evaluation of Trichoderma spp. for biocontrol potential of common bean damping-off pathogens. Biocontrol Sci. Technol. 30: 228¿242.

    22. Bellgard, S., Smith, C., Probst, C. 2019. Biological Control of Phytophthora agathidicida: Desk-top literature review. Biosec. N. Z. 19207:1¿35.

    23. Benítez, T., Rincón, A.M., Limón, M.C., Codon, A.C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249¿260.

    24. Bercovich, B.A., Villafañe, D.L., Bianchi, J.S., Taddia, C., Gramajo, H., Chiesa, M.A., Rodríguez, E. 2022. Streptomyces eurocidicus promotes soybean growth and protects it from fungal infections. Biol. Control 165: 104821.

    25. Bérdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1¿26.

    26. Bergey, D.H., Holt, J.G., Hensyl, R. 2005. Bergey¿s Manual of Determinative Bacteriology; Lippincott Williams and Wilkins: Baltimore, MD, USA. 2: 1208¿1232.

    27. Berihun, T., Tadele, M., Kebede, F. 2017. The application of biochar on soil acidity and other physic-chemical properties of soils in southern Ethiopia. J. Plant Nutr. Soil Sci. 180: 381¿388.

    28. Bernal, M.G., Campa-Córdova, Á.I., Saucedo, P.E., González, M.C. Marrero, R.M. Mazón-Suástegui, J.M. 2015. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet. World. 8: 170¿176.

    29. Bhatti, A.A., Haq, S., Bhat, R.A. 2017. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111: 458¿467.

    30. Blanco-López, M.A., Bejarano-Alcázar, J., Malero-Vera, J.M., Jiménez-Díaz, R.M., 1989. Current status of Verticillium wilt of cotton in southern Spain: Pathogen variation and population in soil, in: Tjamos, E.C., Beckman C.H., (Eds.), Vascular wilt diseases of plants. Springer-Verlag, Berlin, 123¿132.

    31. Bodah, E.T. 2017. Root rot diseases in plants: a review of common causal agents and management strategies. J. Agric. Technol. 5: 555661.

    32. Bradley, C.A., Hartman, G.L., Nelson, R.L., Müller, D.S., Pedersen, W.L. 2001. Response of ancestral soybean lines and comercial cultivars to Rhizoctonia solani root and hypocotyls rot. Plant Dis. 85: 1091¿1095.

    33. Braña, A.F., Sarmiento-Vizcaíno, A., Pérez-Victoria, I., Martín, J., Otero, L., Palacios-Gutiérrez, J.J., Cal, S. 2019. Desertomycin G, a new antibiotic with activity against Mycobacterium tuberculosis and human breast tumor cell lines produced by Streptomyces althioticus MSM3, isolated from the Cantabrian Sea intertidal macroalgae Ulva sp. Mar. Drugs. 17: 114.

    34. Bredholt, H., Fjærvik, E., Johnsen, G., Zotchev, S.B. 2008. Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Mar. Drugs. 6: 12¿24.

    35. Brimner, T.A., Boland, G.J. 2003. A review of the non-target effects of fungi used to biologically control plant diseases. Agric. Ecosyst. Environ. 100: 3¿16.

    36. Bubici, G. 2018. Streptomyces spp. as biocontrol agents against Fusarium species. CAB Reviews. 3: 1¿15.

    37. Bubici, G., Marsico, A.D., D¿Amico, M., Amenduni, M., Cirulli, M. 2013. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl. soil ecol. 72: 128¿134.

    38. Bubici, G.; Marsico, A.D.; D¿Amico, M.; Amenduni, M.; Cirulli, M. 2013. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl. Soil Ecol. 72: 128¿134.

    39. Bunt, C.R., Price, S., Hampton, J., Stelting, S. 2016. Coated Solid Substrate Microbe Formulations: Pseudomonas spp. and Zeolite. In Microbial-Based Biopesticides: Methods and Protocols; Glare, T.R., Moran-Diez, M.E., Eds.; Springer Nature, Berlin, Germanypp. 49¿57.

    40. Butterfield, E.J., DeVay, J.E. 1977. Reassessment of soil assays for Verticillium dahliae. Phytopathology. 67: 1073¿1078.

    41. Campbell, C.L., Madden, L.V. 1990. Introduction to plant disease epidemiology. Willey, New York, NY, USA.: John Wiley & Sons Ltd 42. Cao, L., Qiu, Z., You, J., Tan, H., Zhou, S. 2004. Isolation and characterization of endophytic Streptomyces strains from surface¿sterilized tomato (Lycopersicon esculentum) roots. Lett. Appl. Microbiol. 39: 425¿430.

    43. Carlucci, A., Raimondo, M.L., Colucci, D., Lops, F. 2022. Streptomyces albidoflavus strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants. Plants. 11: 1420.

    44. Carrero¿Carrón, I., Rubio, M.B., Niño¿Sánchez, J., Navas¿Cortés, J.A., Jiménez¿Díaz, R.M., Monte, E., Hermosa, R. 2018. Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones. Plant Pathol. 67: 1758¿1767.

    45. Castro, D., Torres, M., Sampedro, I., Martínez-Checa, F., Torres, B., Béjar, V. 2020. Biological control of Verticillium wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms. 8: 1080.

    46. Caviedes, E.Z., Silva, A.P., Mogollón, A.M.O. 2021. Biocontrol of rice sheath blight with microorganisms obtained in rice cultivated soils. Bragantia. 80: e0921.

    47. Chaiharn, M., Theantana, T., Pathom-aree, W. 2020. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens. 9: 126.

    48. Charousová, I., Medo, J., Hleba, L., Císarová, M., Javoreková, S. 2019. Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa. Braz. J. Pharm. Sci. 5: e17249.

    49. Chavarro-Mesa, E., Ceresini, P., Pereira, D., Vicentini, S., Silva, T., Ramos-Molina, L., Vieira Júnior, J. R. 2020. A broad diversity survey of Rhizoctonia species from the Brazilian Amazon reveals the prevalence of R. solani AG-1 IA on signal grass and the new record of AG-1 IF on cowpea and soybeans. Plant Pathol. 69: 455¿466.

    50. Cheema, M.T., Fatima, A., Sajid, I. 2016. Molecular identification, bioactivity screening and metabolic fingerprinting of the Actinomycetes of chenab river sediments. Microbiol. Res. J. Int. 17: 1¿13.

    51. Chen, Q., Bai, S., Zhang, T., Duan, C., Zhao, J., Xue, Q., Li, Y. 2021. Effects of seed-coating preparations of living Streptomyces globisporus on plant growth promotion and disease control against verticillium wilt in cotton. Sustainability. 13: 6001.

    52. Chen, Y., Zhang, Q., Feng, X., Wojnowska, M., O'Hagan, D. 2021. Streptomyces aureorectus DSM 41692 and Streptomyces virens DSM 41465 are producers of the antibiotic nucleocidin and 4¿-fluoroadenosine is identified as a co-product. Org. Biomol. Chem. 19: 10081¿10084 53. Chen, Y.F., Zhou, D.B., Qi, D.F., Gao, Z.F., Xie, J.H., Luo, Y.P. 2018. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Front. Microbiol. 8: 2704.

    54. Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam, S.A., Mcgarrell, D.M., Garrity, G.M., Tiedje, J.M. 2005. The Ribosomal Data base Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: 294¿296.

    55. Coley-Smith. 1990. White rot disease of Allium problems of solborne diseases in microcosm. Plant Pathol. 39: 214¿222.

    56. Coley¿Smith. White rot disease of Allium problems of solborne diseases in microcosm. Plant Pathol. 1990, 39, 214¿222.

    57. Cook, R.J. 1988. Biological control and holistic plant-health care in agriculture. Am. J. Alternat. Agric. 3: 51¿62.

    58. Coombs, J.T., Franco, C.M. 2003. Isolation and identi¿cation of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69: 5603¿5608.

    59. Cordovez, V., Carrion, V.J., Etalo, D.W., Mumm, R., Zhu, H., Van Wezel, G.P., Raaijmakers, J.M. 2015. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front. Microbiol. 6: 1081.

    60. Cuesta, G., García-de-la-Fuente, R., Abad, M., Fornes, F., Torriani-Gorini, A., Yagil, E., Silver, S. 2012. Isolation and identi¿cation of actinomycetes from a compost-amended soil with potential as biocontrol agents. J. Environ. Manag. 95: 281¿284.

    61. c*msille, A., Undabarrena, A., González, V., Claverías, F., Rojas, C., Cámara, B. 2017. Biodiversity of actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Mar. Drugs. 15: 286.

    62. Dalal, J.M., Kulkarni, N.S. 2014. Antagonistic and plant growth promoting potentials of indigenous endophytic actinomycetes of soybean (Glycine max (L.) Merril). CIBTech J. Microbiol. 3: 1¿12.

    63. Dávila-Medina. M.D., Gallegos-Morales, G., Hernández-Castillo, F.D., Ochoa-Fuente, Y.M., Flores-Olivas, A. 2013. Actinomicetos antagónicos contra hongos fitopatógenos de importancia agrícola. Rev. Mexicana Cienc. Agric. 4: 1187¿1196.

    64. Dezfully, N.K., Hanumanthu, N., Heidari, A. 2018. Streptomyces chartreusis strain ACTM-8 from the Soil of Kodagu, Karnataka State (India): Isolation, Identification and antimicrobial activity. Int. J. Pharm. Chem. Biol. 8: 187¿194.

    65. Dhingra, O.D., Sinclair, J.B. 1995. Basic Plant Pathology Methods, 2nd ed.; CRC Press, Boca Raton, FL.

    66. Díaz, C.M. 2011. Incidence of Rhizoctonia spp., Sclerotium rolfsii and Macrophomina phaseolina on common bean in Villa Clara. Ph.D. Thesis, Universidad Central ¿Marta Abreu¿ de Las Villas, Santa Clara, Cuba.

    67. Díaz-Díaz, M, Bernal-Cabrera, A., Trapero, A., Jiménez-González, A., Medina-Marrero, R., Cupull-Santana, R.D., Águila-Jiménez, E., Agustí-Brisach, C., 2023. Biocontrol of root rot complex disease of Phaseolus vulgaris by Streptomyces sp. strains in the field. Crop Prot. 165: 106164, 68. Díaz-Díaz, M., Bernal-Cabrera, A., Trapero, A., Medina-Marrero, R., Sifontes-Rodríguez, S., Cupull-Santana, R.D., Agustí-Brisach, C. 2022. Characterization of Actinobacterial Strains as Potential Biocontrol Agents against Macrophomina phaseolina and Rhizoctonia solani, the Main Soil-Borne Pathogens of Phaseolus vulgaris in Cuba. Plants. 11: 645.

    69. Djebaili, R., Pellegrini, M., Ercole, C., Farda, B., Kitouni, M., Del Gallo, M. 2021. Biocontrol of soil-borne pathogens of Solanum lycopersicum L. and Daucus carota L. by plant growth-promoting Actinomycetes: In vitro and In planta antagonistic activity. Pathogens. 10: 1305.

    70. Donald, L., Pipite, A., Subramani R., Owen, J., Keyzers, R.A., Taufa, T. 2022. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol. Res. 13: 418¿465.

    71. Doohan, F. 2005. Fungal pathogens of plants. In Fungi: biology and applications, Kavanagh, K., Ed; John Wiley, Chichester, UK, pp. 232¿263.

    72. Doolotkeldieva, T., Bobusheva, S., Konurbaeva, M. 2015. Effects of Streptomyces biofertilizer to soil fertility and rhizosphere¿s functional biodiversity of agricultural plants. Adv. Microbiol. 5: 555¿571.

    73. Dorjey, S., Dolkar, D., Sharma, R. 2017. Plant growth promoting rhizobacteria Pseudomonas: a review. Int. J. Curr. Microbiol. App. Sci. 6: 1335¿1344.

    74. Du, Y., Wang, T., Jiang, J., Wang, Y., Lv, C., Sun, K., Sun, J., Yan, B., Kang, C., Guo, L., Huang, L. 2022. Biological control and plant growth promotion properties of Streptomyces albidoflavus St-220 isolated from Salvia miltiorrhiza rhizosphere. Front. Plant Sci. 13: 976813.

    75. Eke, P., Wakam, L.N., Fokou, P.V.T., Ekounda, T.V., Sahu, K.P., Wankeu, T.H.K., Boyom, F.F. 2019. Improved nutrient status and Fusarium root rot mitigation with an inoculant of two biocontrol fungi in the common bean (Phaseolus vulgaris L.). Rhizosphere. 12: 100172.

    76. El Karkouri, A., El Hassani, F.Z., El Mzibri, M., Benlemlih, M., El Hassouni, M. 2010. Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease. Ann. Microbiol. 60: 263¿268.

    77. El Karkouri, A.; Assou, S.A.; El Hassouni, M. 2019. Isolation and screening of actinomycetes producing antimicrobial substances from an extreme Moroccan biotope. Pan. Afr. Med. J. 33: 329.

    78. Elagamey, E., Sinha, A., Narula, K., Abdellatef, M.A., Chakraborty, N., Chakraborty, S. 2017. Molecular dissection of extracellular matrix proteome reveals discrete mechanism regulating Verticillium dahliae triggered vascular wilt disease in potato. Proteomics. 17: 1600373.

    79. Elkins, R.B., Ingels, C.A., Lindow, S.E. 2004. Control of fire blight by Pseudomonas fluorescens A506 introduced into unopened pear Flowers. In IX International Pear Symposium 671: 585¿594.

    80. El-Sersy, N.A., Abd-Elnaby, H., Abou-Elela, G.M., Ibrahim, H.A., El-Toukhy, N.M. 2010. Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. Afr. J. Biotechnol. 9: 6355¿6364.

    81. Elshafie, H.S., Camele, I. 2022. Rhizospheric Actinomycetes revealed antifungal and plant¿growth-promoting activities under controlled cnvironment. Plants. 11: 1872.

    82. El-Shatoury, S.A., Ameen, F., Moussa, H., Abdul, W.O., Dewedar, A., AlNadhari, S. 2020. Biocontrol of chocolate spot disease (Botrytis cinerea) in faba bean using endophytic actinomycetes Streptomyces: a field study to compare application techniques. Peer J. 8: e8582.

    83. El-Tarabily, K.A., Nassar, A.H., Hardy, G.S.J., Sivasithamparam, K. 2009. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Applied Microbiol. 106: 13¿26.

    84. El¿Tarabily, K.A., Soliman, M.H., Nassar, A.H., Al¿Hassani, H.A., Sivasithamparam, K., McKenna, F., Hardy, G.S. J. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49: 573¿583.

    85. Errakhi, R., Bouteau, F., Lebrihi, A., Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23: 1503¿1509.

    86. Errakhi, R., Lebrihi, A., Barakate, M. 2009. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J. Appl. Microbiol. 107: 672¿681.

    87. Errakhi, R.; Lebrihi, A.; Barakate, M. 2009. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J. Appl. Microbiol. 107: 672¿681.

    88. Evangelista-Martínez, Z., Contreras-Leal, E.A., Corona-Pedraza, L.F., Gastélum-Martínez, É. 2020. Biocontrol potential of Streptomyces sp. CACIS-1.5 CA against phytopathogenic fungi causing postharvest fruit diseases. Egypt. J. Biol. Pest. Control. 30: 1¿10.

    89. Faisal, G.O., Al-Obaidi, S.I. 2021. Molecular identification of local isolated Streptomyces species from North region soil in Iraq. J. Educ. Sci. 30: 45¿62.

    90. Fatmawati, U., Meryandini, A., Nawangsih, A.A., Wahyudi, A.T. 2019. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversita 20: 2970¿2977 91. Fatmawati, U., Meryandini, A., Nawangsih, A.A., Wahyudi, A.T. 2020. Damping-off disease reduction using actinomycetes that produce antifungal compounds with beneficial traits. J. Plant Prot. Res. 60: 233¿243.

    92. Faure, B., Benítez, R., Rodríguez, E., Grande, O., Torres, M., Pérez, P. 2014. Guía Técnica para la producción de frijol común y maíz. Ministerio de la Agricultura, Cuba. pp. 39.

    93. Feeney, M.A., Newitt, J.T., Addington, E., Algora-Gallardo, L. Allan, C., Balis, L. 2022. ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics. 8: 000824.

    94. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39: 783¿791.

    95. FHIA. 2007. Deterioro poscosecha de las frutas y hortalizas frescas por hongos y bacterias. 4: 2¿5. http//fhia.org.hn/dowloads/fhiainfdic2007.pdf, Accesada 06/10/22.

    96. Food and Agricultural Organisation of the United Nations (FAOSTAT). 2021. http://www.fao.org/faostat/ es/#data/QCL/visualize (accessed on 11 August 2021).

    97. Food and Agricultural Organization of the United Nations (FAOSTAT). 2022. http://www.fao.org/faostat/es/#data/QCL/visualize (Accessed on 26 January 2022).

    98. Franco, C., Michelsen, P., Percy, N., Conn, V., Listiana, E., Moll, S., Coombs, J. 2007. Actinobacterial endophytes for improved crop performance. Australas. Plant Pathol. 36: 524¿531.

    99. Franco-Correa, M. 2009. Utilización de los actinomicetos en procesos de biofertilización. Rev. Peru Biol. 16, 239¿242.

    100. Friberg, H., Lagerlöf, J., Rämert, B. 2005. Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci. Technol. 15: 641¿658.

    101. Fu, X., Liu, S., Ru, J., Tang, B., Zhai, Y., Wang, Z., Wang, L. 2022. Biological control of potato late blight by Streptomyces sp. FXP04 and potential role of secondary metabolites. Biological Control. 169: 104891.

    102. Gajera, H., Domadiya, R., Patel, S., Kapopara, M., Golakiya, B. 2013. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system¿a review. Curr. Res. Microbiol. Biotechnol. 1: 133¿142.

    103. García-Jiménez, J., Monte, E., Trapero, A. 2010. Los hongos y oomicetos fitopatógenos. In Enfermedades de las plantas causadas por hongos y oomicetos: naturaleza y control integrado; Jiménez-Díaz, R.M., Montesinos, E., Eds; Phytoma, Valencia, España, pp 23¿50.

    104. Gebily, D.A., Ghanem, G.A., Ragab, M.M., Ali, A.M., Soliman, N.E.D.K., El-Moity, A., Tawfik, H. 2021. Characterization and potential antifungal activities of three Streptomyces spp. as biocontrol agents against Sclerotinia sclerotiorum (Lib.) de Bary infecting green bean. Egypt. J. Biol. Pest. Control. 31: 1¿15.

    105. Getha, K., Vikineswary, S. 2002. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. J. Ind. Microbiol. Biotechnol. 28: 303¿310.

    106. Getha, K., Vikineswary, S., Wong, W.H., Seki, T., Ward, A., Goodfellow, M. 2005. Evaluation of Streptomyces sp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets. J. Ind. Microbiol. Biotechnol. 32: 24¿32.

    107. Gomes, E.D.B., Dias, L.R.L., Rita de Cassia, M. 2018. Actinomycetes bioactive compounds: Biological control of fungi and phytopathogenic insect. Afr. J. Biotechnol. 17: 552¿559.

    108. Gomes, R.C., Semedo, L.T.A.S., Soares, R.M.A., Linhares, L.F., Ulhoa, C.J., Alviano, C.S., Coelho, R.R.R. 2001. Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J. Appl. Microbiol. 90: 653¿661.

    109. González, D. 2007. Mico¿ora Patogénica en Semillas de Frijol (Phaseolus vulgaris) y Habichuela (Vigna Unguiculata Sesquipedalis), su Efecto en la Germinación y su Control; Trabajo de Diploma; Facultad de Ciencias Agropecuarias; UCLV: Santa Clara, Cuba. 18¿30.

    110. González, I., Ayuso-Sacido, A., Anderson, A., Genilloud, O. 2005. Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401¿415.

    111. González, M. 1988. Enfermedades Fungosas Del Frijol en Cuba; Técnica, C., Ed.; Cientí¿co-Técnica: La Habana, Cuba. 39¿60.

    112. Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B. K., Sandeep, D., Rupela, O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 30: 1070¿1078.

    113. Gopalakrishnan, S., Srinivas, V. 2019. Management of soil-borne diseases of grain legumes through broad-spectrum actinomycetes having plant growth-promoting and biocontrol traits. In Plant Microbe Interface, Varma, A. et al. Eds; Springer Nature, Switzerland, pp 129¿144.

    114. Gopalakrishnan, S., Srinivas, V., Alekhya, G., Prakash, B., Kudapa, H., Rathore, A., Varshney, R. K. 2015. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springer Plus. 4: 1¿10.

    115. Gopalakrishnan, S., Srinivas, V., Naresh, N., Alekhya, G., Sharma, R. 2019. Exploiting plant growth-promoting Amycolatopsis sp. for bio-control of charcoal rot of sorghum (Sorghum bicolor L.) caused by Macrophomina phaseolina (Tassi) Goid. Arch. Phytopathol. Plant Prot. 52: 543¿559.

    116. Goswami, D., Thakker, J.N., Dhandhukia, P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. 2: 1127500.

    117. Goudjal, Y., Toumatia, O., Yekkour, A., Sabaou, N., Mathieu, F., Zitouni, A. 2014. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol. Res. 169: 59¿65.

    118. Guo, Y., Zheng, W., Rong, X., Huang, Y. 2008. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for Streptomycete systematics. Int. J. Syst. Evol. 58: 149-159.

    119. Hamdali, H.; Ha¿di, M.; Virolle, M.J.; Ouhdouch, Y. 2008. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-de¿cient soil under greenhouse conditions. Appl. Soil Ecol. 40: 510¿517.

    120. Hamid, R., Khan, M.A., Ahmad, M.M., Abdin, M.Z., Musarrat, J., Javed, S. 2013. Chitinases: an update. J. Pharm. Bioallied. Sci. 5:21¿29.

    121. Han, D.D., Wang, L.Y., Luo, Y.P. 2018. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiol. Res. 208: 1¿11.

    122. Han, J.H., Cho, M.H., Kim, S.B. 2012. Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae. Syst. Appl. Microbiol. 35: 1¿6.

    123. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z., Pogni, R. 2018. Streptomyces secondary metabolites. Basic biology and applications of Actinobacteria. IntechOpen. 99¿122.

    124. Hassan, N., Nakasuji, S., Elsharkawy, M.M., Naznin, H.A., Kubota, M., Ketta, H., Shimizu, M. 2017. Biocontrol potential of an endophytic Streptomyces sp. strain MBCN152-1 against Alternaria brassicicola on cabbage plug seedlings. Microbes. Environ.: ME17014.

    125. Hassanisaadi, M., Shahidi Bonjar, G.H., Hosseinipour, A., Abdolshahi, R., Ait Barka, E., Saadoun, I. 2021. Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy. 11: 846.

    126. Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60: 579¿598.

    127. He, H., Hao, X., Zhou, W., Shi, N., Feng, J., Han, L. 2020. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217. J. Appl. Microbiol. 128: 1143¿1152.

    128. Henin, S., Monnier, G., Combeau, A. 1958. Méthode pour l¿étude de la stabilité structurale des sols. Ann. Agron. 1: 73¿92.

    129. Hernández Pérez, D.; Díaz Castellanos, M.; Quiñones Ramos, R.; Santos Bermúdez, R.; Portal González, N.; Herrera Isla, L. 2018. Control de Rhizoctonia solani en frijol común con rizobacterias y productos naturales. Cent. Agríc. 45: 55¿60.

    130. Hernández, J.A.; Pérez, J.M.; Bosch, I.D.; Rivero, S.N. 2015. Clasi¿cación de los Suelos de Cuba; Ediciones INCA: Mayabeque, Cuba. 10¿75.

    131. Hesse, P.R. 1971. A textbook of soil analysis. Chemical Publishing Co. Inc., New York, USA, pp 520.

    132. Hibar, K., Gamaoun, W., Triki, M. A. 2017. Isolation, identification and biological control of the major pathogens causing root rot and wilt diseases of young olive trees in Tunisia. J. New Sci. 39: 2121¿2130 133. Himmelstein, J.C., Maul, J.E., Everts, K.L. 2014. Impact of five cover crop green manures and Actinovate on Fusarium wilt of watermelon. Plant Disease. 98: 965¿972.

    134. Huisman, O.C., Ashworth, Jr. L.J. 1974. Quantitative assessment of Verticillium alboatrum in field soils: procedural and substrate improvements. Phytopathology. 64: 1043¿1044.

    135. Imada, C., Masuda, S., Kobayashi, T., Hamada-Sato, N., Nakashima, T. 2010. Isolation and characterization of marine and terrestrial actinomycetes using a medium supplemented with NaCl. Actinomycetologica. 24: 12¿17.

    136. Jogaiah, S., Kurjogi, M., Govind, S.R., Huntrike, S.S., Basappa, V.A., Tran, L.S.P. 2016. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection. Sci. Rep. 6: 1¿13.

    137. Jurkevitch, E., Hadarm, Y., Chen, Y. 1992. Diferentil siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58: 119¿124.

    138. Kamara, V., Gangwar, M. 2015. Antifungal Activity of Actinomycetes from Rhizospheric Soil of Medicinal plants against phytopathogenic fungi. Int. J. Curr. Microbiol. Appl. Sci. 4: 182¿187.

    139. Kanini, G.S., Katsifas, E.A., Savvides, A.L., Karagouni, A.D. 2013. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. BioMed Res. Int. 1¿10.

    140. Kannabiran, K. 2017. Actinobacteria are better bioremediating agents for removal of toxic heavy metals: an overview. Int. J. Environ. Technol. Manag. 20: 129¿138.

    141. Kawase, T., Saito, A., Sato, T., Kanai, R., Fujii, T., Nikaidou, N., Miyash*ta, K., Watanabe, T. 2004. Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl. Environ. Microbiol. 70: 1135¿1144.

    142. Keijer, J., Korman, M.G., Dullemans, A.M., Houterman, P.M., De Bree, J., Van Silfhout, C.H. 1997. In vitro analysis of host plant speci¿city in Rhizoctonia solani. Plant Pathol. 46: 659¿669.

    143. Kekuda, T.P., Shobha, K.S., Onkarappa, R. 2010. Fascinating diversity and potent biological activities of Actinomycete metabolites. J. Pharm. Res. 3: 250¿256.

    144. Khadayat, K., Sherpa, D.D., Malla, K.P., Shrestha, S., Rana, N., Marasini, B.P., Parajuli, N. 2020. Molecular identification and antimicrobial potential of Streptomyces species from Nepalese soil. Int.J. Microbiol. 2020: 8.

    145. Khair, A. 2011. In vitro antifungal activity of Streptomyces spororaveus RDS28 against some phytopathogenic fungi. Afr. J. Agric. Res. 6: 2835¿2842.

    146. Khan, S.A., Abid, M., Hussain, F. 2017. Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi. Pak. J. Bot. 49: 1211¿1216.

    147. Khendkar, A.S., Deshpande, A.R. 2018. Isolation and screening of Streptomyces for biocontrol potential against Rhizoctonia bataticola infection of soybean. Indian J. Appl. Microbio. 21: 78¿86.

    148. Khucharoenphaisan, K., Rodbangpong, K., Saengpaen, P., Sinma, K. 2016. Exploration on soil actinomycetes against Phytophthora sp. causing root rot of cassava and plant growth promoting activities. J. Plant Sci. 11: 38¿44.

    149. Kiptoo, G.J., Kinyua, M., Kiplagat, O., Wanjala, F.M.E., Kiptoo, J.J., Cheboi, J.J., Ngurwe, J.K. 2016. Evaluation of common bean (Phaseolus vulgaris L.) varieties for resistance to bean stem maggot (Ophiomyia spp.) in Kenya. J. Exp. Agric. Int. 12: 1¿7.

    150. Komaki, H. 2022. Resolution of housekeeping gene sequences used in MLSA for the genus Streptomyces and reclassification of Streptomyces anthocyanicus and Streptomyces tricolor as heterotypic synonyms of Streptomyces violaceoruber. Int. J. Syst. Evol. Microbiol. 72: 005370.

    151. Korayem, A.S., Abdelhafez, A.A., Zaki, M.M., Saleh, E.A. 2020. Biological control of green bean damping-off disease caused by Rhizoctonia solani by Streptomyces parvulus strain 10d. Egypt. J. Microbiol. 55: 87¿94.

    152. Kuldau, G., Bacon, C. 2008. Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol. Control. 46: 57¿71.

    153. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870¿1874.

    154. Kunova, A., Bonaldi, M., Saracchi, M., Pizzatti, C., Chen, X., Cortesi, P. 2016. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol. 16: 1¿11.

    155. Kuswinanti, T., Junaid, M. 2019. Inhibitory mechanism in vitro: Potential of bacterial consortium against shallot wilt disease caused by Fusarium oxysporum. IOP Conf. Ser. Earth Environ. Sci. 343: 012257.

    156. Lahdenperä, M. L., Simon, E., Uoti, J. 1991. Mycostop-a novel biofungicide based on Streptomyces bacteria. Develop. Agric. Manag. For. Ecol. 23: 258¿263.

    157. Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.H., Sarthou, J.P., Cellier, V., Aubertot, J.N. 2017. Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 37: 10.

    158. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E; Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics. New York, Wiley, 115¿175.

    159. Law, J.W.F., Ser, H.L., Khan, T.M., Chuah, L.H., Pusparajah, P., Chan, K.G., Goh, B.H., Lee, L.H. 2017. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 8: 3.

    160. Law, J.W.F., Tan, K.X., Wong, S.H., Ab Mutalib, N.S., Lee, L.H. 2018. Taxonomic and characterization methods of Streptomyces: A review. Prog. Microb. Mol. Biol. 1, a0000009.

    161. Lee A and Wong E. 2009. Optimization and the robustness of BOX A1R PCR for DNA fingerprinting using Trout Lake E. coli isolates. J. Exp. Microbiol. Immunol. 13: 104¿113.

    162. Lee, Y.J., Jeong, J.J., Jin, H., Kim, W., Jeun, Y.C., Yu, G.D., Kim, K.D. 2019. In vitro and in vivo inhibitory effects of gaseous chlorine dioxide against Fusarium oxysporum f. sp. batatas isolated from stored sweetpotato: study II. Plant. Pathol. J. 35: 437.

    163. Li, S., Shi, Y., Xiong, Y., Liu, Y. 2023. Diagnosis of Rare Bone Infection Caused by Nocardia by 16S rRNA Gene Sequencing. Infect. Drug Resist. 347¿353. https://doi.org/10.2147/IDR.S392342.

    164. Li, Y., Guo, Q., He, F., Li, Y., Xue, Q., Lai, H. 2020. Biocontrol of root diseases and growth promotion of the tuberous plant aconitum carmichaelii induced by Actinomycetes are related to shifts in the rhizosphere microbiota. Microb. Ecol. 79: 134¿147.

    165. Li, Y., Guo, Q., He, F., Li, Y., Xue, Q., Lai, H. 2020. Biocontrol of root diseases and growth promotion of the tuberous plant Aconitum carmichaelii induced by Actinomycetes are related to shifts in the rhizosphere microbiota. Microb. Ecol. 79: 134¿147.

    166. Li, Y., He, F., Lai, H., Xue, Q. 2017. Mechanism of in vitro antagonism of phytopathogenic Scelrotium rolfsii by actinomycetes. Eur. J. Plant Pathol. 149: 299¿311.

    167. Liu, X., Dou, G., Ma, Y. 2016. Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J. Gen. Plant Pathol. 82: 165¿173.

    168. Llorens, E., Agustí-Brisach, C. 2022. Biocontrol of plant diseases by means of antagonist microorganisms, biostimulants and induced resistance as alternatives to chemicals. Plants. 11: 3521.

    169. Lombard, L., Sandoval-Denis, M., Lamprecht, S.C., Crous, P.W. 2019. Epitypification of Fusarium oxysporum¿clearing the taxonomic chaos. Persoonia. 43: 1¿47.

    170. Loomans, A.J. 2021. Every generalist biological control agent requires a special risk assessment. BioControl. 66: 23¿35.

    171. López-Escudero, F.J., Del Río, C., Caballero, J.M., Blanco-López, M.A. 2004. Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur. J. Plant Pathol. 110: 79¿85.

    172. López-Escudero, F.J., Mercado-Blanco, J. 2011. Verticillium wilt olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil. 344: 1¿50.

    173. López-Escudero, F.J., Mercado-Blanco, J. 2011. Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil. 344: 1¿50.

    174. López-Moral A., Agustí-Brisach C., Trapero A. 2021. Plant Biostimulants: New Insights Into the Biological Control of Verticillium Wilt of Olive. Front. Plant Sci. 12:662178.

    175. López-Moral, A., Agustí-Brisach, C., Ruiz-Blancas, C., Antón-Domínguez, B.I., Alcántara, E., Trapero, A. 2022a. Elucidating the effect of nutritional imbalances of N and K on the infection of Verticillium dahliae in Olive. J. Fungi. 8: 139.

    176. López-Moral, A., Llorens, E., Scalschi, L., García-Agustín, P., Trapero, A., Agustí-Brisach, C. 2022b. Resistance induction in olive tree (Olea europaea) against Verticillium wilt by two beneficial microorganisms and a copper phosphite fertilizer. Front. Plant Sci. 13: 831794 177. López-Moral, A., Sánchez-Rodríguez, A.R., Trapero, A., Agustí-Brisach, C., 2023. Establishment of a method to collect root exudates from olive plants and its validation by determining the effect of root exudates against Verticillium dahliae. Plant & Soil, https://doi.org/10.1007/s11104-022-05770-1.

    178. Loqman, S., Barka, E.A., Clément, C., Ouhdouch, Y. 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. J. Ind. Microbiol. Biotechnol. 25: 81¿91.

    179. Majeed, M., Mir, G.H., Hassan, M., Mohuiddin, F.A., Paswal, S., Farooq, S. 2018. Damping off in chilli and its biological management-a review. Int. J. Curr. Microbiol. App. Sci. 7: 2175¿2185.

    180. Majid, M.U., Awan, M.F., Fatima, K., Tahir, M.S., Ali, Q., Rashid, B., Husnain, T. 2016 Phytophthora capsici on chilli pepper (Capsicum annuum L.) and its management through genetic and bio-control: a review. Zemdirbyste-Agriculture. 103.

    181. Maldonado, M.C., Orosco, C.E., Gordillo, M.A., Navarro, A.R. 2010. In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum. Afr. J. Microbiol. Res. 4: 2451¿2456.

    182. Manigundan, K., Joseph, J., Ayswarya, S., Vignesh, A., Vijayalakshmi, G., Soytong, K., Radhakrishnan, M. 2020. Identi¿cation of biostimulant and microbicide compounds from Streptomyces sp. UC1A-3 for plant growth promotion and disease control. Int. J. Agric. Technol. 16: 1125¿1144.

    183. Mansoori, M., Heydari, A., Hassanzadeh, N., Rezaee, S., Naraghi, L. 2013. Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. J. Plant. Prot. Res. 53.

    184. MAPA, 2021. https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed 21/01/2023).

    185. Mayo-Prieto, S., Porteous-Álvarez, A.J., Mezquita-García, S., Rodríguez-González, Á., Carro-Huerga, G., del Ser-Herrero, S., Casquero, P.A. 2021. In¿uence of Physicochemical Characteristics of Bean Crop Soil in Trichoderma spp. Development. Agronomy. 11: 274.

    186. Meena, B., Rajan, L.A., Vinithkumar, N.V., Kirubagaran, R. 2013. Novel marine actinobacteria from emerald Andaman & Nicobar Islands: A prospective source for industrial and pharmaceutical byproducts. BMC Microbiol. 13: 13¿45.

    187. Mercado-Blanco, J., Rodr¿guez-Jurado, D., Hervás, A., Jiménez-Díaz, R.M. 2004. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol. Control. 30: 474¿486.

    188. Meschke, H., Schrempf, H. 2010. Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana. Microb. Biotechnol. 3: 428¿443.

    189. Ministerio de la Agricultura (MINAG). 2008. Guía Técnica Para el Cultivo de Frijol en Cuba; Instituto de Investigaciones Hortícolas ¿Liliana Dimitrova¿: Buenaventura, Cuba. 18p.

    190. Ministerio de la Agricultura (MINAG). 2016. Listado o¿cial de Variedades Comerciales; Dirección de Semillas y Recursos Filogenéticos; CENSA: La Habana, Cuba. pp 41.

    191. Misk, A., Franco, C. 2011. Biocontrol of chickpea root rot using endophytic Actinobacteria. BioControl. 56: 811¿822.

    192. Mitra, D., Mondal, R., Khoshru, B., Senapati, A., Radha, T.K., Mahakur, B., Mohapatra, P.K.D. 2022. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere. 32: 149¿170.

    193. Mohamed, A.E., Nessim, M.G., Ibrahim Abou-el-seoud, I., Darwish, K.M., Shamseldin, A. 2019. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bulletin of the National Research Centre. 43: 1¿13.

    194. Monteiro P, Borba M.P., Van Der Sand S.T. 2017. Evaluation of the antifungal activity of Streptomyce ssp. on Bipolaris sorokiniana and the growth promotion of wheat plants. J. Agric. Sci. 9: 229.

    195. Montes-Osuna, N., Mercado-Blanco, J. 2020. Verticillium wilt of olive and its control: what did we learn during the last decade?. Plants. 9: 735.

    196. Moubasher, A.H., Abdel-Sater, M.A., Zeinab, S.M. 2018. Diversity of floricolous yeasts and filamentous fungi of some ornamental and edible fruit plants in Assiut area, Egypt. Curr. Res. Environ. Appl. Mycol. 8: 135¿161.

    197. Muharrem, T., K¿l¿çog¿lu, M.Ç., Ismail, E. Characterization and pathogenicity of Rhizoctonia isolates collected from Brassica oleracea var. acephala in Ordu, Turkey. Phytoparasitica. 48: 273¿286.

    198. Mulero-Aparicio, A., Agustí-Brisach, C., Varo, Á., López-Escudero, F.J., Trapero, A. 2019. A non-pathogenic strain of Fusarium oxysporum as a potential biocontrol agent against Verticillium wilt of olive. Biol. Control. 139: 104045.

    199. Mulero-Aparicio, A., Agustí-Brisach, C., Varo, Á., López-Escudero, F.J., Trapero, A. 2019. A non-pathogenic strain of Fusarium oxysporum as a potential biocontrol agent against Verticillium wilt of olive. Biol. Control. 139: 104045.

    200. Mulero-Aparicio, A., Trapero, A., Escudero, F.L. 2020b. A non pathogenic strain of Fusarium oxysporum and grape marc compost control Verticillium wilt of olive. Phytopathol. Mediterr. 59: 159¿167.

    201. Mulero-Aparicio, A., Varo, A., Agustí-Brisach, C., López-Escudero, F.J., Trapero, A. 2020. Biological control of Verticillium wilt of olive in the field. Crop Prot. 128: 104993.

    202. Mulero-Aparicio, A., Varo, A., Agustí-Brisach, C., López-Escudero, F.J., Trapero, A., 2020a. Biological control of Verticillium wilt of olive in the field. Crop Prot. 128: 104993.

    203. Mullen, M.D. 2004. Transformations of phosphorus and other elements. In Principles and applications of soil microbiology, Sylvia, D.M., Fuhrmann, J.J., Hartel, P.G., Zuberer, D.A., Eds; Prentice Hall, New Jersey, pp 369¿386.

    204. Navarrete, R., Trejo, E., Navarrete, J., Manuel, J., Alberto, J. 2009. Reacción de genotipos de frijol a Fusarium spp. y Rhizoctonia solani bajo condiciones de campo e invernadero. Agric. Téc. Méx. 35: 455¿466.

    205. Neilands, J.B. 1995. Siderophores: struture and function of microbial iron transport compounds. J. Biol. Chem. 270: 26732.

    206. Newman, D.J., Cragg, G.M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75: 311¿335.

    207. Nimnoi, P., Ruanpanun, P. 2020. Suppression of root-knot nematode and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biological Control. 145: 104244.

    208. Norma Ramal De La Agricultura. (NRAG-279). 1980. Suelos. Análisis químico. Determinación de las formas móviles de Fósforo y Potasio. Ministerio de Agricultura, La Habana, Cuba.

    209. O¿Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100: 5729¿5746.

    210. Olanrewaju, O.S., Babalola, O.O. 2019. Streptomyces: Implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 103: 1179¿1188.

    211. Olaya, G., Abawi, G.S. 1996. Effect of wáter potentialon mycelial grow tan don production and germination of sclerotia of Macrophomina phaseolina. Plant Dis. 80: 1347¿1350.

    212. Olsen, R.S., V.C. Cole, F.S. Watanabe y L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA. Washington, D.C. Circular 939.

    213. Oskay, A.M., Üsame, T., Cem, A. 2004. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr. J. Biotechnol. 3: 441¿446.

    214. Otani, H., Udwary, D.W., Mouncey, N.J. 2022. Comparative and pangenomic analysis of the genus Streptomyces. Scientific Reports 12: 18909.

    215. Pacios-Michelena, S., Aguilar Gonzalez, C.N., Alvarez-Perez, O.B., Rodriguez-Herrera, R., Chavez-Gonzalez, M., Arredondo Valdes, R., Ilyina, A. 2021. Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Front. Sustain. Food Syst. 5: 696518.

    216. Palazzini, J.M., Yerkovich, N., Alberione, E., Chiotta, M., Chulze, S.N. 2017. Reprint of an integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene 11: 2¿7.

    217. Pandey, A.K., Deka, B., Varshney, R., Cheramgoi. E.Ch., Babu, A. 2021. Do the beneficial fungi manage phytosanitary problems in the tea agro-ecosystem. BioControl. 66: 445¿462.

    218. Panneerselvam, P., Selvakumar, G., Ganeshamurthy, A.N., Mitra, D., Senapati, A. 2021. Enhancing pomegranate (Punica granatum L.) plant health through the intervention of a Streptomyces consortium. Biocontrol Sci. Technol. 31: 430¿442.

    219. Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C., Göker, M. 2020. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70: 5607-5612. https://lpsn.dsmz.de/ (accessed December 2022).

    220. Patil, H.J., Srivastava, A.K., Kumar, S., Chaudhari, B.L., Arora, D.K. 2010. Selective isolation, evaluation and characterization of antagonistic actinomycetes against Rhizoctonia solani. World J. Microbiol. Biotechnol. 26: 2163¿2170.

    221. Pattanapipitpaisal, P., Kamlandharn, R. 2012. Screening of chitinolytic actinomycetes for biological control of Sclerotium rolfsii stem rot disease of chilli. Songk. J. Sci. Technol. 34: 387¿393.

    222. Pottorff, L.P., Panter, K.L. 2009. Integrated pest management and biological control in high tunnel production. HortTechnol. 19: 61¿65.

    223. Prapagdee, B., Kuekulvong, C., Mongkolsuk, S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int. J. Biol. Sci. 4: 330.

    224. Priya, S., Kumar, G., Kumar, S., Bharti, S. K. 2018. Isolation, characterization and identification of lignocellulose degrading actinomycetes from litchi fruit orchard of Muzaffarpur, Bihar, India. Pharma Innov. 7: 463¿467.

    225. Qi, D.F., Zou, L., Zhou, D., Chen, Y., Gao, Z., Feng, R., Wang, W. 2019. Taxonomy and Broad Spectrum Antifungal Activity of a Rare Actinomycete SCA3-4 Isolated from Cactus Rhizosphere. Front. Microbiol. 10: 1390.

    226. Radhakrishnan, R., Hashem, A., Abd_Allah, E. F. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8: 667.

    227. Rajeaswari, E., Latha, P., Sudhaleshmi, C., Indhumeena, L., Muthukumar, R., Keerthana S. 2021. Streptomyces: A versatile biocontrol agent against plant diseases. In Innovative approaches in diagnosis and management of crop diseases Vol. 3: Nanomolecules and biocontrol agents, Singh, R.K.S. Gopala Ed; Apple Academic Press/CRC Press, Boca Raton, FL, USA pp. 209¿241.

    228. Rani, K., Parashar, A., Wati, L. 2021. Estimation of hydrolyzing potential of chickpea actinomycetes for degradation of complex compounds through enzymes and acid production. Pharma. Innov. 10: 220¿223.

    229. Rashad, Y.M., Al-Askar, A.A., Ghoneem, K.M., Saber, W.I., Hafez, E.E. 2017. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 45: 227¿237.

    230. Rathore, A.S., Gupta, D.R. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 8.

    231. Raza, W., Ling, N., Zhang, R., Huang, Q., Xu, Y., Shen, Q. 2017. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit. Rev. Biotechnol. 37: 202¿212.

    232. Reghmit, A., Benzina-tihar, F., López Escudero, F.J., Halouane-Sahir, F., Oukali, Z., Bensmail, S., Ghozali, N. 2021. Trichoderma spp. isolates from the rhizosphere of healthy olive trees in northern Algeria and their biocontrol potentials against the olive wilt pathogen, Verticillium dahliae. Org. Agric.11: 639¿657.

    233. Rejón-Martínez, G.A., Ríos-Muñiz, D.E., Contreras-Leal, E.A., Evangelista-Martínez, Z. 2022. Antagonist activity of Streptomyces sp. Y20 against fungi causing diseases in planta and fruits. Trop. Subtrop. Agroecosyst. 25: 49 234. Rong X and Huang Y. 2010. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA¿DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int. J. Syst. Evol Microbiol. 60: 696¿703.

    235. Rong, X., Huang, Y. 2012. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol. 35: 7¿18.

    236. Roopa, K.P., Gadag, A.S. 2019. Management of soil-borne diseases of plants through some cultural practices and actinobacteria. In Plant Health Under Biotic Stress, Ansari, R., Mahmood, I. Eds; Springer Nature, Singapore, pp 129¿145.

    237. Rothrock, C.S., Gottlieb, D. 1984. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 30: 1440¿1447.

    238. Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Carina Audisio, M., Brandan, C. P. 2019. Bene¿cial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biol. Control. 141: 104¿131.

    239. Saeed, E.E., Sham, A., Salmin, Z., Abdelmowla, Y., Iratni, R., El-Tarabily, K., AbuQamar, S. 2017. Streptomyces globosus UAE1, apotential effective biocontrol agent for black scorch disease in date palm plantations. Front Microbiol. 8: 1455.

    240. Sánchez-Hernández, E., Muñoz-García, M., Brasier, C.M., Trapero-Casas, A. 2001. Identity and pathogenicity of two PhytophthoraPhytophthora taxa associated with a new root disease of olive trees. Plant Dis. 85: 411¿416.

    241. Sánchez-Hernández, E., Trapero-Casas, A., Navarro-Cerrillo, R.M., Gallo-Ibáñez, L., Fernández-Rebollo, P. 2004. Efecto de distintas fertilizaciones de fósforo en la resistencia de brinzales de encina y alcornoque a "Phytophthora cinnamomi" Rands. Invest. Agrar.: Sist. Recur. For. 13: 550¿558.

    242. Sandani, H.B.P., Weerahewa, H.L.D. 2018. Wilt diseases of tomato (Lycopersicum esculentum) and chilli (Capsium annum) and their management strategies: Emphasis on the strategies employed in Sri Lanka: A review. Sri Lankan J. Biol. 3: 24¿43.

    243. Sarwar, A., Latif, Z., Zhang, S., Hao, J., Bechthold, A. 2019. A Potential Biocontrol Agent Streptomyces violaceusniger AC12AB for managing potato common scab. Front. Microbiol. 10: 202.

    244. Sarwar, M. 2015. The Killer Chemicals as Controller of Agriculture Insect Pests: The Conventional Insecticides. Int. J. Chem. Biomol. Sci. 1: 141¿147.

    245. Saxena, A., Upadhyay, R., Kango, N. 2015. Isolation and identi¿cation of actinomycetes for production of novel extracelular glutaminase free L-asparaginase. Indian J. Exp. Biol. 53: 786¿793.

    246. Schmidt, T.M., Thomé, A.H.E., Sperotto, R.A., Granada, C.E. 2019. Effect of rhizobia inoculation on the development of soil-borne pathogens infecting common bean plants. Eur. J. Plant. Pathol. 153: 687¿694.

    247. Selim, M.S.M., Abdelhamid, S.A., Mohamed, S.S. 2021. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 19: 72.

    248. Sellem, I., Triki, M., Elleuch, L., Chef¿, M., Chakchouk, A., Smaoui, S., Mellouli, L. 2017. The use of newly isolated Streptomyces strain TN258 as potential biocontrol agent of potato tubers leak caused by Pythium ultimum. J. Basic. Microbiol. 57: 393¿401.

    249. Selvakumar, P., Viveka, S., Prakash, S., Jasminebeaula, S., Uloganathan, R. 2012. Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int. J. Pharma Bio Sci. 3: 188¿197.

    250. Shahid, M., Zaidi, A., Ehtram, A., Khan, M. S. 2019. In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pestic. Bbiochem. Physiol. 157: 33¿44.

    251. Shahidi Bonjar, G.H., Aghighi, S. 2005. Chitinolytic and microsclerostatic activity of Iranian strains of Streptomyces plicatus and Frankia sp. on olive isolate of Verticillium dahliae. Biotechnology. 4: 108¿113.

    252. Shahidi Bonjar, G.H.; Aghighi, S. 2005. Chitinolytic and microsclerostatic activity of Iranian strains of Streptomyces plicatus and Frankia sp. on olive isolate of Verticillium dahliae. Biotechnology. 4: 108¿113.

    253. Sharifi, M., Bipinraj, N.K. 2019. Isolation and Identification of Actinomycetes with Anticandida Activity from Mangrove Soil. Biosci. Biotechnol. Res. Asia. 16: 611¿615.

    254. Sharma, P., Kalita, M. C., Thakur, D. 2016. Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front. Microbiol. 7: 347.

    255. Shih, H.D., Liu, Y.C., Hsu, F.L., Mulabagal, V., Dodda, R., Huang, J.W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J. Agric. Food. Chem. 51: 95¿99.

    256. Shinya, S., f*ckamizo, T. 2017. Interaction between chitosan and its related enzymes: a review. Int. J. Biol. Macromol. 104: 1422¿1435.

    257. Shirling, E.T., Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16: 313¿340.

    258. Shivabai, C., Gutte, S. 2019. Isolation of actinomycetes from soil sample using different pretreatment methods and its comparative study. Int. J. Res. Anal. Rev. 6: 697¿702.

    259. Singh, C., Parmar, R.S., Jadon, P., Kumar, A. 2016. Characterization of actinomycetes against phytopathogenic fungi of Glycine max. (L.). Asian J. Pharm. Clin. 9: 216¿9.

    260. Singh, C., Parmar, R.S., Jadon, P., Kumar, A. 2017. Optimization of cultural conditions for production of antifungal bioactive metabolites by Streptomyces spp. isolated from soil. Int. J. Curr. Microbiol. Appl. Sci. 6: 386¿396.

    261. Singh, G., Dukariya, G., Kumar, A. 2020. Distribution, Importance and Diseases of Soybean and Common Bean: A Review. Biotechnol. J. Int. 24: 86¿98.

    262. Singh, P.K., Upadhyay, S.K., Krishnappa, C., Saurabh, S., Singh, R., Rai, P., Narayanan, K.P. 2018. U.S. Patent No. 10,006,014. Washington, DC: U.S. Patent and Trademark Office.

    263. Sinha, P., Rizvi, G., Parashar, R. 2018. Management of wilt disease of pulses: a review. Int. J. Pure. Appl. Biosci. 6: 696¿708.

    264. Soares, A.C.F., Sousa, C.D.S., Garrido, M.D.S., Perez, J.O., Almeida, N.S.D. 2006. Soil Streptomycetes with in vitro activity against the yam pathogens Curvularia eragrostides and Colletotrichum gloeosporioides. Braz. J. Microbiol. 37: 456¿461.

    265. Song, L., Jiang, N., Wei, S., Lan, Z., Pan, L. 2020. Isolation, screening, and identi¿cation of actinomycetes with antifungal and enzyme activity assays against Colletotrichum dematium of Sarcandra glabra. Mycobiology. 48: 37¿43.

    266. Spedaletti, Y., Cardenas Mercado, G., Taboada, G., Aban, C., Aparicio, M., Rodriguero, M., Vizgarra, O., Sühring, S., Galíndez, G., Galván, M. 2017. Molecular identi¿cation and pathogenicity of Rhizoctonia spp. recovered from seed and soil samples of the main bean growing area of Argentina. Aust. J. Crop. Sci. 11: 952¿959.

    267. Sreevidya, M., Gopalakrishnan, S., Kudapa, H., Varshney, R. K. 2016. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz. J. Microbiol. 47: 85¿95.

    268. Srivastav, A.S.H.U., Pofali, P. 2018. Screening of antimicrobial activity and polyketide synthase gene identification from the Actinomycetes isolates. J. Microbiol. Biotechnol. 10: 396846.

    269. Stackebrandt, E., Witt, D., Kemmerling, C., Kroppenstedt, R., Liesack, W. 1991. Designation of Streptomycetes 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl. Eviron. Microbiol. 57: 1468¿1477.

    270. Steel, R.G.D., Torrie, J.H. 1985. Bioestadística: Principios y Procedimientos. 2nd ed. McGraw Hill, Bogotá, Colombia, pp 613.

    271. Stefanova, M., Díaz de Villegas, M.E., Mena, C.J. 2014. Control biológico de enfermedades de plantas en Cuba. In Control Biológico de Enfermedades de Plantas en América Latina y el Caribe, Bettiol, W., Rivera, M.C., Mondino, P., Montealegre, J.R., Colmenarez, Y.C., Eds.; Faculdad de Agronomia, Universidad de la República: Montevideo, Uruguay, pp. 201¿204.

    272. Suryawanshi, P.P., Krishnaraj, P.U., Suryawanshi, M.P. 2020. Evaluation of actinobacteria for biocontrol of sheath blight in rice. J. Pharmacogn. Phytochem. 9: 371¿376.

    273. Swofford, D. L. 2003. PAUP* 4.0b10: Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.

    274. Sylvia, D., Fuhrmann, J., Hartel, P., Zuberer, D. 2005. Principles and applications of Soil Microbiology. 2nd edition. Pearson/Prentice Hall, Upper Saddle River, New Jersey, pp 640.

    275. Takahashi, Y., Nakashima, T. 2018. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics. 7: 45.

    276. Tamura, K., Stecher, G., Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022¿3027.

    277. Tiwari, D., Shouche, S., Bhati, P., Das, P.A. 2021. Consolidated method for selective isolation of actinomycetes based on choice of substrate. Int. Ann. Sci. 11: 10¿21.

    278. Tokala, R.K., Strap, J.L., Jung, C.M., Crawford, D.L., Hamby Salove, M., Deobald, L.A., Bailey, J.F. and Morra, M.J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC-108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68: 21612171.

    279. Torres, M.J., Pérez-Brandan, C., Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Audisio, M. C. 2016. Biological activity of the lipopeptideproducing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol. Control. 105: 93¿99.

    280. Townsend, G.R., Heuberger, J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Rep. 27: 340¿343.

    281. Trapero, C., Serrano, N., Arquero, O., Del Río, C., Trapero, A., López-Escudero, F.J. 2013. Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Dis. 97: 668¿674.

    282. Tu¿rul, K. M. Soil Management in Sustainable Agriculture. In Soil Management and Plant Nutrition for Sustainable Crop Production. IntechOpen. 2019.

    283. Tyburski, J. 2014. Root and foot rot diseases of winter wheat grown in conventional and organic systems. J. Agric. Chem. Environ. 3: 1.

    284. Ulloa, J.A., Ulloa, P.R., Ramírez, R.J., Ulloa, R.B. 2011. El frijol (Phaseolus vulgaris): Su importancia nutricional y como fuente de ¿toquímicos. Rev. Fuente. 3: 5¿9.

    285. Van Schoonhoven, A.; Corrales, P. 1987. Sistema estándar para la evaluación de germoplasma de frijol; CIAT, Cali, Colombia, pp 56.

    286. Van Wezel, G.P.; Van Der Meulen, J.; Kawamoto, S.; Luiten, R.G.; Koerten, H.K.; Kraal, B. ssgA is essential for sporulation of Streptomyces coelicolor A3 (2) and affects hyphal development by stimulating septum formation. J. Bacterial. 2000, 182, 5653¿5662.

    287. Varo, A., Mulero-Aparicio, A., Adem, M., Roca, L.F., Raya-Ortega, M.C., López-Escudero, F.J., Trapero, A. 2017. Screening water extracts and essential oils from Mediterranean plants against Verticillium dahliae in olive. Crop Protection. 92: 168¿175.

    288. Varo, A., Raya-Ortega, M.C., Trapero, A., 2016. Selection and evaluation of microorganisms for biocontrol of Verticillium dahliae in olive. J. Appl. Microbiol. 121: 767¿777.

    289. Varo-Suárez, A., Raya-Ortega, M.C., Agustí-Brisach, C., García-Ortiz, Civantos, C., Fernández-Hernández, A., Mulero-Aparicio, A., Trapero, A. 2018. Evaluation of organic amendments from agro-industry waste for the control of verticillium wilt of olive. Plant Pathol. 67: 860¿870.

    290. Varo¿Suárez, A., Raya¿Ortega, M.C., Agustí¿Brisach, C., García¿Ortiz¿Civantos, C., Fernández¿Hernández, A., Mulero¿Aparicio, A., Trapero, A. 2018. Evaluation of organic amendments from agro¿industry waste for the control of Verticillium wilt of olive. Plant Pathol. 67: 860¿870.

    291. Velásquez-Valle, R., Schwartz, H.F. 1997. Symptom response and internal discoloration in bean lines infected with Fusarium oxysporum f. sp. phaseoli isolates from USA and Spain. Rep. Bean Improv. Coop. 40: 97¿99.

    292. Vieira, F.C.S., Nahas, E. 2005. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol. Res. 160: 197¿202.

    293. Vitanovic, E. 2012. Use of Cu Fungicides in Vineyards and Olive Groves. In Fungicides for Plant and Animal Diseases, Dhanasekaran, D., Thajuddin, N., Panneerselvam, A., Eds; IntechOpen Limited, London, UK. pp 310.

    294. Viteri, D.M., Linares, A.M. 2017. Reaction of Phaseolus spp. genotypes to ashy stem blight caused by Macrophomina phaseolina. Euphytica. 213: 199.

    295. Viti, C., Quaranta, D., De Philippis, R., Corti, G., Agnelli, A., Cuniglio, R., Giovannetti, L. 2008. Characterizing cultivable soil microbial communities from copper fungicide-amended olive orchard and vineyard soils. World J. Microbiol. Biotechnol. 24: 309¿318.

    296. Volpiano, C.G., Lisboa, B.B., São José, J.F.B., de Oliveira, A.M.R., Beneduzi, A., Passaglia, L.M.P., Vargas, L.K. 2018. Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium rolfsii (Athelia) on the common bean. Plant Soil. 432: 229¿243.

    297. Vurukonda, S.S.K.P., Giovanadri, D., Stefani, E. 2021. Growth promotion and biocontrol activity of endophytic Streptomyces spp. In Prime archives in molecular sciences, 2nd ed.; Giampietro, L., Ed.; Vide Leaf, Hyderabad, India, pp 55.

    298. Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29¿38.

    299. Watanabe, T. 2010. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. International Standard Book Number 13. CRC press, Boca Raton, FL, pp 19.

    300. Were, S.A., Narla, R., Mutitu, E.W., Muthomi, J.W., Munyua, L.M., Roobroeck, D., Valauwe, B. 2021. Biochar and Vermicompost Soil Amendments Reduce Root Rot Disease of Common Bean (Phaseolous vulgaris L.). Afr. J. Biol. Sci. 3: 176¿196.

    301. White, J.G., Linfield, C.A., Lahdenpera, M.L., Uoti, J. 1990. Mycostop-a novel biofungicide based on Streptomyces griseoviridis. In Brighton Crop Protection Conference, Pests and Diseases. British Crop Protection Council 1: 221¿226.

    302. Wonglom, P., Suwannarach, N., Lumyong, S., Ito, S. I., Matsui, K., Sunpapao, A. 2019. Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata. Biol. Control. 138: 104046.

    303. Wu, Z.M., Yang, Y., Li, K.T. 2019. Antagonistic activity of a novel antifungalmycin N2 from Streptomyces sp. N2 and its biocontrol efficacy against Rhizoctonia solani. FEMS Microbiol. Lett. 366: fnz018.

    304. Xue, L., Wang, J., Liu, X., Xue, Q., Shen, G., Zhao, J. 2012. Inhibition of antagonistic Streptomyces spp. on microsclerotia formation and germination of Verticillium dahliae. Acta Phytophylacica Sinica. 39: 289¿296.

    305. Xue, L., Xue, Q., Chen, Q., Lin, C., Shen, G., Zhao, J. 2013. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protect. 43: 231¿240.

    306. Xue, L., Xue, Q., Chen, Q., Lin, C., Shen, G., Zhao, J. 2013. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection. 43: 231¿240.

    307. Yadav, A.K., Yandigeri, M., Vardhan, S., Sivakumar, G., Rangeshwaran, R., Tripathi, C.P. M. 2014. Streptomyces sp. S160: A potential antagonist against chickpea charcoal root rot caused by Macrophomina phaseolina (Tassi) Goid. Ann. Microbiol. 64: 1113¿1122.

    308. Yandigeri, M.S., Malviya, N., Solanki, M.K., Shrivastava, P., Sivakumar, G. 2015. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika Lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J. Microbiol. Biotechnol. 31: 1217¿1225.

    309. Yang, Y., Zhang, S.W., Zhang, Y., Liu, Q., Li, K.T. 2019. Antifungal Activities and Stability of Fermentation Broth from Streptomyces corchorusii Strain AUH-1. Biotechnol. Bulletin. 35: 80.

    310. Zar, J.H. 2010. Biostatistical Analysis, 5th ed.; Pearson Education, New Delhi, India, Singapore.

    311. Zarandi, M.E., Bonjar, G.S., Dehkaei, F.P., Moosavi, S.A., Farokhi, P.R., Aghighi, S. 2009. Biological control of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in greenhouse. Am. J. Appl. Sci. 6: 194¿199.

    312. Zhang, T., Jin, Y., Zhao, J.H., Gao, F., Zhou, B.J., Fang, Y.Y., Guo, H.S. 2016. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol. Plant. 9: 939¿942.

    313. Zhao, X., Ni, Y., Liu, X., Zhao, H., Wang, J., Chen, Y.C., Liu, H. 2020. A simple and effective technique for production of pycnidia and pycnidiospores by Macrophomina phaseolina. Plant Dis. 104: 1183¿1187. Aghighi, S., Shahidi Bonjar, G.H., Saadoun, I. 2004. First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnol. (Faisalabad). 3: 90¿97.

  • Selección de cepas de actinomicetos para el control de hongos fitopatógenos de suelo, con especial referencia a la podredumbre radical de la judía común (phaseolus vulgaris l.) (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Reed Wilderman

    Last Updated:

    Views: 5682

    Rating: 4.1 / 5 (52 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Reed Wilderman

    Birthday: 1992-06-14

    Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

    Phone: +21813267449721

    Job: Technology Engineer

    Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

    Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.